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3 LEAKAGE THROUGH COMPOSITE LINERS 

3.1 Introduction 

3.1.1 Scope uf the section 
As indicated in Section 1.2.4, two types of liners are considered: geomem- 
brane liners (i.e. geomembrane alone) and composite Jiners (i.e. liners 
comprised of a geomembrane associdced with a layer of low-permeability 
soil). Section 2 discussed leakage through geomembrane liners. Leakage 
through composite liners is discussed in this section. 

3.1.2 Leahge mechan~m 
Leakage through a composite liner. A composite liner is ccrmprised of a 

geomembrane upper component and a low-permeabiIity soil layer lower 
component. Therefore, leakage migrates first through the geomembrane 
component and, then, through the soiI component, 

Leakage U~rough ihe geomembrane coznponenl of a compusise hv. As 
indicated in Section 2.1.2, there are two mechanisms by which leakage can 
migrate through a geomembrane: 

l permeation through the geomembrane (i.e. flow through a geomem- 
brane that has no defects); and 

l ffow through geomembrane defects such as holes or pinholes. 

*Part I of this paper appeared in Geomriies and Geomembramzs S(1). 
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the low-permeability soil underIying the geomembrane, i.e. the head loss 
at the geomembrane hole is negligible compared to the head loss in the 
low-permeability soil. Therefore, if the material overlying the geomem- 
brane is more permeable than the low-permeability soil component of the 
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composite liner (which is practically always the case), no significant head 
loss will take place in the overlying material. Therefore, the presence of 
the overlying material will not significantly affect the leakage rate, unless 
fine particles migrating from the overlying material clog the geomembrane 
hole and/or the space between the geomembrane and low-permeability 
soil. 

From the above discussion, it may be concluded that, for all practical 
purposes, the rate of leakage through a composite liner is independent of 
the overlying material. 

3.1.3 Organization of the seclion 
Because the leakage mechanisms presented above arc complex, it is 
appropriate to consider different and complementary approaches. Accor- 
dingfy, the next two sections (3.2 and 3.3) are devoted to analytical studies 
and laboratory model tests, respectively. Lastly, practical conclusions 
regarding the evaluation of leakage rates through composite liners are 
presented in Section 3.4. 

3.2 AnaIytical studies 

3.2. I Iniroducrion 

perfect contact (which is an ideal case that is extremely difficult to achieve 
in practice). 

Accordingly, two types of analytical studies are presented hereafter: 

As indicated in Section 3.1.2, liquid that has passed through a hole in the 
geomembranc component of a composite liner may flow laterally some 
distance between the geomcmbranc and the low-permeability soil before 
migrating into the low-permeability soil. This ‘interface flow’ is possible 
only if there is a space between the geomcmbrane and the low-permeabil- 
ity soil. There is no interface flow if the geomembrane and the soil are in 

l analytical studies assuming that there is perfect contact between the 
geomembrane and the tow-pcrmcability soil, and, consequently, 
liquid does not flow laterally between the geomembrane and the 
low-permeability soil; and 

l analytical studies assuming that liquid flows laterally between the 
geomembranc and the low-permeability soil before migrating into the 
low-permeability soil. 

In all cases, anaIyses presented in this section are based on the assump- 
tion of steady-state saturated flow conditions. 

Three-dimensional anaIyses of this complex problem are difficult and it 
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l there is horizontal flow in the soil along a portion of the interface 
(although there is no flow befween the geomembrane and the soil 
since perfect contact is assumed); and 

l there is a phreatic surface beyond which the soil is not saturated. 
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is appropriate to start with two-dimensional analyses. Accordingly, the 
remainder of Section 3.2 is organized as follows: 

l Two-dimensional analyses assuming perfect contact (Section 3.2.2). 
l Three-dimensional analyses assuming perfect contact (Section 3.2.3). . - . - . ..-. -.- . 
l Three-dimensional analyses with interface flow (Section 3.2.4). 

3.2.2 Two-dimensional analyses assumirtg perjiect contact 
Faure” has made an extensive two-dimensional theoretical analysis (using 
numerical methods) of the leakage through a composite liner due to a hole 
in the geomembrane, assuming perfect contact between the geomembrane 
and the underlying low-permeability soil. Most of Section 3.2.2 is a 
summary of Faure’s work. A two-dimensional study was also made by 
‘Sherard” who traced flow nets by trial and error for a Iimited number of 
cases. 

Asstmpriom. The two-dimensional case discussed in this section is 
defined as follows (Fig. S(a)): 

l The hole in the geomembrane is a slot with a width b and an infinite 
length in the direction perpendicular to the considered cross-section. 

l The depth of liquid on top of the geomembtane is h,,,. 
l The thickness of the low-permeability soil layer beneath the geomem- 

brane is H, and its hydraulic conductivity is k,. 

Description of r/reflow. Both Faure and Sherard have shown that for 
two-dimensional flow (Fig. 5(b)): 

These qualitative characteristics of two-dimensional flow are certainly 
also applicable to the three-dimensional case (circular hole). Examples of 
equipotential Iines for the two-dimensional case are given in Fig. 6 and a 
chart giving the location of the phreatic surface in the two-dimensional 
case is presented in Fig. 7. l 

Lea&e rate. A chart giving the leakage rate when the geomembrane 
and the underlying soil are in perfect contact was given by Faurersfo for 
the two-dimensional case (Fig. 8). The results given by Sherard” for a 
limited number of cases are consistent with Faure’s. Faure’s chart (Fig. 8) 
is used with the following equation: . 

Q’ = C&(Hs +kv) 
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Fig. 5. Two-dimensional ffow through a composite liner due to a geomembrane defect, 
assuming perfect contact between geomembranc and soil layer: (a) definition of the 
two-dimensional case considered; (b) correct solution; (c) vertical flow giving a lower 
bound of the leakage rate; (d) radial flow giving an upper bound of the leakage rate. As 
demonstrated by Faure:‘” (i) the Row is limited laterally by a phreatic surface (i.e. there is 
no flow beyond surfaces (1) in Fig. S(b)); and (ii) there is flow in the soil along a portion of 
the geomembrane-soil interface (although there is no flow between the geomembrane and 
the soil because there is no space between the geomernbrane and the soil in the case of 

perfect contact). 

where: Q’ = leakage rate per unit length in the direction perpendicular to 
the figure; CF = dimensionless coefficient given by the chart as a function 
of b/H, and h,lH,; b = width of the slot; k, = hydraulic conductivity of 
the loj+permeabiIity soif underlying the geomembrane; HS = thickness of 
the low-permeability soil underlying the geomembrane; and h, = depth 
of liquid on top of the geomembrane. Basic S1 units are: Q* (m’/s), b (m), 
k (W, K (m), and h, (m>- 

Lower boundsolurion. If the flow is assumed to be vertical (Fig. 5(c)), 
the leakage rate is given by a close-form solution obtained by applying 
Darcy’s equation to a rectangular domain: 

where the notation is the same as above. 
A comparison of Figs 5(b) and 5(c) shows that the area of flow for the 

case of vertical flow (Fig. 5(c)) is only a fraction of the area of flow for the 
correct solution (Fig. 5(b)). Therefore, it may be concluded that the 
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(a) 0 

Fig. 6. Typical equipotential lines Tar leakage through a composite liner due to a 
geomembrane hole. These equipotential iines result from a two-dimensional study assum- 
ing that the gcomcmbranc and the underlying soil are in perfect contact (see case (b) in 
Fig. 5) (from Faure). ” The cases shown above are: (a) b/H, = O-02 and h,lH, = 1; (b) 
b/H, = O-02 and hyJH, = 3; (c) b/H, = 0.2 and h,lH, = l/3; and (d) b/H, - O-2 and 
h,,,/H, = 1. Notation: b - width of infinitely long hole (slot) in the gcomcmbrane; 
h, = depth of liquid on top of the geomembrane; and H, = thickness of the low- 
permeability soil layer underlying the gcomembrane. Note that there is no flow beyond the 

pltrea tic surface. 
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0.1 1 10 100 10= 10’ 
2hJ b 

2H./b 

Fig. 7. Lateral extent of the phreatic surface limiting Row in the soil layer due to a hole in 
the geomembrane (from Faure).” This chart is related to the two-dimensional case (the 
hole is a slot of width b) and perfect contact between the geomembrane and the soil layer. 
The chart shows that, when the water depth becomes very large, Lllb and &lb become 
very large, whereas L,IH, and &IH, reach a limiting value of the order of 5. In other words, 
the lateral extent of the saturated zone can be large compared to the hole size. hut not more 

than a few times the thickness of the soil layer. 
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Kg. 8. Chart for calculation of leakage rate due to geomembrane hole when the geomem- 
brdnc is in pcrfcct contact with P low-permeability soil. This chart gives the dimensionless 
coefficient CF to be used in eqn (23) which gives the teakage rate through a composite liner 
due to a slot in the geomembrane (two-dimensional case). This chart was established by 
Faure.*n2’ The coefficient Cr: can also be used in ecw (31) to make rtn approximate 

(i) if h,lH, = 0, the flow is vertical (Fig. S(c)); and (ii) CF has the same value for at1 values 
of h,lH, greater than 5. 

leakage rate obtained using eqn (24) is a lower bound solution for the 
leakage rate through the composite Iiner when the geomembrane and the 
underlying soil are in perfect contact. This lower bound solution gives a 
good approximation of the iiakage rate if the ratio between the width of 
the geomembrane hole and the thickness of the low-permeability soil is 
large, which is rare. 

Upper boundsolution. If the flow is assumed to be radial (Fig. 5(d)), the 
leakage rate is given by a close-form solution obtained by integrating 
Darcy’s equation for a circular domain: 

( i Q8 = ?rk,(h, + H,)h(2HJb) ‘W ) 
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In some cases, eqn (25) Ieads to absurd results, such as flow rates 
increasing as soil thickness increases. However, this case is useful because 
Faure showed that it provides an upper bound for the leakage rate through 
the composite liner when the geomembrane and the underlying soil are in 
perfect contact. Also the fact that the leakage rate in the case of radial flow 
is expressed by a close-form solution for the three-dimensional case 
(circular hole) as well as for the two-dimensional cast provides a conve- 
nient way to compare the three-dimensional case with the two-dimension- 
al case. Ahy relationship between the two- and three-dimensional cases is 
useful because the three-dimensional case is very difficult to analyse. 

Approximare solurion. The upper bound solution provided by the radial 
flow equation (eqn (25)) is excessively high in many cases. In addition, for 
H,lh, larger than a certain value, the flow rate increases with increasing 
soil thickness, as shown in Fig. 9 (case c). Since the leakage rate cannot 
increase if the thickness of the soil layer increases while all other variables 
remain constant, the upper bound cannot be used as an approximation for 
the leakage rate when H,/h, is large- 

Equation (25) can be arbitrarily transformed by replacing h, + Hs by 
h WV which gives: 

Q* = nk, h, An(2HJb) (26) 

As it turns out, this equation can be used for large values of If@, where 
it gives values (case (c’) in Fig. 9) less than, but not too far from, the values 
calculated using eqn (23). 

Usefulness of the rwo-dimenrionai cake. The above considerations re- 
garding boundaries and approximations related to the two-dimensional 
case will provide useful guidance for an approximate evaluation of the 
leakage rate in the three-dimensional case (circular hole) where no 
numerical solution similar to eqn (23) is availabIe. 

3.2.3 T/wee-dimemionai analyses assuming perfect contact 
In the case of three-dimensional flow (circular hole) with perfect contact 
between the geomembrane and the underlying soil, the flow is certainly 
limited by a belI-shaped phreatic surface similar to the phreatic surface of 
the two-dimensional flow (case (b) in Fig. 5). However, to the best of our 
knowledge, no analytical or numerical study is presently available for this 
case. Nonetheless, upper bound and lower bound solutions are available 
and they are expressed by close-form equations. 

Lower bound solution. The equation related to vertical flow (similar to 
the two-dimensional case (c) in Kg. 5) gives a lower bound for the leakage 
rate and is obtained by writing Darcy’s equation for a cylindrical domain: 

c-1 1 
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Fig. 9. Comparison of various assumptions regarding lcakagc rates through composite 
liners. Tbc curves give leakage rates through a composite liner due to a slot of width 6 in the 
geomembrane (two-dimensional case), assuming perfect contact between the geomem- 
brane and the low-permeability soil. Cakulations were made with several assumptions 
regarding flow: (a) correct solution;(b) vertical flow; (c) radial flow using eqn (25); and (c’) 
radial flow usingeqn (26). Correct sotution, vertical flow, and radial flow nrc illustrated in 

Fig. 5. (Adapted from Faure.“) 

where: Q = lower bound of the leakage rate; k, = hydraulic conductivity 
of the low-permeability soi1; u = surface area of the hole in the geomem- 
brane (a = ?rd*/4 if the hole is circular); d = diameter of the circular hole; 
h, = liquid depth on top of the geomembrane; and Hs = thickness of the 
low permeability soil. Basic SI units are: Q (m3/s), k, (m/s), u (m2), d(m), 
h, (m), and K (mh 
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Upper bound solution. The equation related to the three-dimensional 
radial flow (similar to the two-dimensional case (d) in Fig. 5) is obtained by 
integrating Darcy’s equation for a spherical domain: 

Q = ?rk,(h, + Ii,) d/( 1 - 0.SdlH,) 

where the notation is the same as above. 
By analogy with the corresponding equation for the two-dimensional 

case (eqn (25)), it may be assumed that eqn (28) provides an upper bound 
solution for the leakage rate when the geomembrane and the underlying 
soil are in perfect contact. It can also be assumed that eqn (28) leads to 
absurd results for some cases, like eqn (25). Therefore, eqn (28) is simply 
used as a preliminary step to obtain a better solution, as indicated below. 

First approximate solution. As discussed for eqn (25) in the two- 
dimensional case, eqn (28) can be arbitrarily transformed by replacing 
h, + ffs by L which results in: 

Q= rk, h, dl( 1 - 03dlH,) (29) 
It is possible that this equation gives an approximate value of the 

leakage rate when d/H, is small (like eqn (26) for the two-dimensional 
case). In most practical cases, d/H, is small since typical geomembrane 
defects are of the order of l-10 mm (OGM-4 in) in diameter, whereas the 
low-permeability soil component of composite liners is often of the order 
of 1 m (3 ft) thick. It is interesting to note that eqn (29) tends toward a very 
simple limit when d/H, tends toward zero: 

Q= ?rk, h, d (30) 
where the notation is the same as for eqn (27). 

Due to the lack of a more rigorous solution, eqn (30) will be used as an 
approximation for the leakage rate when there is perfect contact between 
the geomembrane and underlying low-permeability soil. 

Second approximate solution. Another approach for evaluating leakage 
rates in rhe three-dimensional case is to use the chart established by Faure 
for the two-dimensional case (Fig. 8) and modify eqn (23) by replacing in 
Q* (which is equal to Q/length) the length of the slot by the perimeter -rrd 
of the circular hole (and not half the perimeter, nor the diameter of the 
hole, as one may be tempted to do): 

Q= Gk(ffs+hdd (31) 
where: Q = approximate value of the leakage rate; CF = dimensionless 
cM%icient given by Faure’s chart (Fig. 8); k, = hydraulic conductivity of 
the’low-permeability soil; H, = thickness of the low-permeability soil 
layer; h, = liquid depth on top of the geomembrane; and d = hole 

- 
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CF is dimensionless. 

3.2.4 Three-dimensional analysts with ittterface flow 

Flow mechctnism. As discussed in Section 3.1.2, a fraction of the liquid 

It is interesting to consider the case where there is a gcotextlle between 
the geomembrane and the underlying soil. Strictly speaking, this three- 
component liner does not meet the definition of a composite liner given in 
Section 1.3.2. However, results of experiments described subsequently . . . . . c 

component, a geotextile middle component, and a low-permeability soil 
lower component. (It should be made clear that this geotextile is not a 
drainage layer and should not be connected to any kind of outIet, such as a 
pipe, sump or manhole.) If there is a geotex tile between the geomembrane 
and the underlying low-permeability soil, the interface flow takes place 
partially within the geotextile and partially within the spaces between the 
geotextile and the geomembrane and between the geotextile and the soil. 

Hydraulic head. Flow through composite liners is normally slow. There- 
fore, one may assume that tbere is no significant head loss when liquit 
passes through a geomembrane defect. Consequently, the hydraulir 
head acting on top of the low+ermeability soil, just below a geomembranc 
defect, can be assumed to be equal to the depth of liquid on top of the 
geomembrane, h,. (This implies that the top surface of the low-permeabil- 
ity soil layer is used as the datum for the hydraulic head and geomembranl 
thickness is neglected.) The hydraulic head decreases from h, at the edge 
of the circular defect to zero at the periphery of the wetted area. This i! 
illustrated by Fig. 10 in the case of a circular hole and radial interface.flow. 

The actual shape of the cume of the hydraulic head acting on top of the 
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low-permeability soil, h, as a function of the radius, t, can be given by a 
study of the interface flow. 

Inzerfacefbw. The interface flow is the lateral flow in the space between 
the geomembrane and the soil. Hereafter we assume that the space 
between the geomembrane and the soil is uniform (e-g. an empty space-of 
uniform thickness between the geomembrane and the soil, or a geotextile 
of uniform thickness and permeability between the geomembrane and the 
soil). We aIso assume that the geomembrane hole is circular and the 

AAOIUS MEASURED FROM THE CENTER 

OF THE OEOMCMORANE CIRCULAR HOLE 

Fig. IO. Hydraulic had on top of the low-permeability soil underlying the geomembrane. 
The horizontal reference level for the hydraulic head is the upper surface of the low- 
permeability soil layer. The origin 0 of the radial axis is on the soil surface, below the center 
of the circular hole of the gcomcmbrane. Legend: r = any radial distance measured from 
the origin 0; d = diameter of the geomembrane circular hole; R = radius of the wcttcd 
area; and h, = depth of water on the gcomcmbrane. (Note: For 0 s r < d/2, the hydraulic 
head is actually h = h, + Tg + s, where TE = geomembrane thickness, and s = spacing 

between geomembranc and soil, Tp and s are very small and are neglected.) 

interface flow is radial. The uniform medium between the geomembrane 
and the soil can be characterized by its’hydraulic transmissivity 8. 

If the medium is a geotcxtile, its hydraulic transmissivity is defined by: 

B= k,s (32) 

where: 8 = geotextile hydraulic transmissivity; k, = geotextile in-plane 
hydraulic conductivity; and s = spacing between the geomembrane and 
the underlying soil (i.e. geotextile thickness). Basic SI units are: 8 (m’/s>, 
kP (m/s), and s (m). 

If the medium is an empty space, its hydraulic transmissivity is expressed 
by the following equation, adapted from Brown er ai. ,gwhich was obtained 
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bv advirw Newton’s viscositv law to flow between two smooth, parallel -r r -J ---0 - 
&es: 

.---- -__ - ------ --, m 

&Et 
129 . (33) 

where: 0 = hydraulic transmissivity of the empty space; p = density of the 
liquid; g = acceleration due to gravity; s = spacing between the geomem- 
brane and the soil; and 9 = viscosity of the liquid. Basic SI units are: 8 
(m2is), P (kg/m3), g Ws’), 3 (ml, and rl (kg/(m.s)). 

For example, using the density (p = 1000 kg/m3) and the viscosity 
(7 = 10B3 kg/(m.s)) of water at 20°C. eqn (33) shows that a spacing 
s = 1 mm is equivalent to a hydraulic transmissivity of 8 X 10m4 m*/s, and 
a spacing s = O-1 mm is equivalent to a hydraulic transmissivity of 
8 x 10” m%. In comparison, a typical needlepunched nonwoven geotex- 
tile with a thickness of 3 mm and a hydraulic conductivity of 1 X 1W3 m/s 
has a hydraulic transmissivity of 3 x IQ- m2/s. 

The flow rate related to interface ffow can be expressed using Darcy’s 
equation: 

Qi = kiA = 8iB (34) 

where: Qi = interface flow rate; k = hydraulic conductivity of the flow 
medium; i = hydraulic gradient ; A = cross-sectional area of the flow; 
8 = hydraulic transmissivity of the flow medium; and B = width of the 
flow. Basic SX units are: Qi (m3/s), k (m/s>, A (m”), e(m%), and B (m); iis 
dimensionless. 

In the case of the considered radial flow: 

i = -dh/dr 

B=2nr 

Hence, with Qi = Q, in eqn (34): 

(35) 

(36) 

Qr = -27~ 0 dhtdr m . 
where: Qr = interface radial’flow rate at radius r; and h = hydraulic head 
acting on top of the low-permeability soil. 

Flow through the soil. The slope of the flow lines through the soil is not 
known. For the sake of simplicity, flow through the soil layer is assumed to 
be vertical. Darcy’s equation related to flow through the soil can then be 
written as follows: . . . 

Qs = k&A, ‘--‘- (38) 

where: Q, = flow through the soil; & = vertical hydraulic gradient 
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through the soil; and A, = cross-sectional area of the considered flow. 
Basic SI units are: Q, (m%), k, (m/s), and A, (m2); is is dimensionless. 

In the case considered, the vertical hydraulic gradient in the soil, i,, 
varies radially because the hydraulic head acting on top of the soil, h, 
v&es radially: . .-_ .----..-- A  ..___._._ 

is = 
h + H, 

Hs 
(39) 

where: HS = thickness of the soil layer; and h is a function off as shown in 
Fig. IO. 

If we consider an annular region between radii r and r + dr: 

A, = 2mdr (40) 

Consequently the flow rate in the soii can be expressed as follows: 

de, = 2mk, h +H, dr H 
s 

(41) 

FZmv differen~ialequatiun. The principle of conservation of mass applied 
to the differential element in Fig. 1 I dictates that: 

cfQ,+dQ, = 0 (42) 

dQ, can be derived from eqn (37): 

Combining eqns (41), (42) and (43) leads to: 

W  

Equation (44) was written by Fukuoka” for the case of interface flow in 
a geotextiie (i.e. 0 given by eqn (32)), and by Brown et ai.’ for the case of 
interface flow in an empty space between the geomembrane and the soil 

Ftg. 11. Relationship between radial interface flow, Q,, and flow into the soil, Q,. 
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(i.e. 0 given by eqn (33)). As shown by Brown et ai.,’ this differential 
equation can be solved using Bessel functions. 

Specid case. In order to simplify eqn (44), Brown et ok9 assumed that 
the hydraulic gradient for the vertical flow in soil is one. According to eqn 
(39). this simplifying;nssutnptionis acceptable if the hydraulic head acting 
on the low-permeability soil is negligible compared to the thickness of the 
low-permeability soil. Values of hydraulic heads acting on liners discussed 
in Section 1.3.6 show that the above simplifying assumption is: 

l always acceptabfe for bottom Iiners; 
l unconservative for liquid impoundment top liners; and 
l acceptable in most cases of top liners for landfills. 
Using it = 1 and applying the principle of conservation of mass to the 

flow between the geomembrane hole and the boundary of the differential 
element in Fig. I1 results in: 

Q = Qr+Q, (45) 
where Q, is given by eqn (37), and: 

Q = &ks (46) 

Qs = dks (47) 

where: Q = leakage rate; Q, = interface radial flow rate at radius r; 
Qt = flow into the soil within radius r; R = radius of wetted area; and 
k = hydraulic conductivity of the soil. Basic SI units are: Q, Q, and Ql 
(m3/s>. r and R (m), and ks (m/s). 

Combining eqns (37), (45), (46) and (47) leads to: 

(48) 

Integrating this differential equation leads to the equation of the h-r 
curve: 

-,=E$[,,. ++(&1] 

and the relationship between the depth of liquid, h, and the radius of the 
wetted area: 

where: h, = depth of liquid on the geomembrane; R = radius of the 
wetted area; k, = hydraulic conductivity of the low-permeability soil; 



0 = hydraulic transmissivity of the space between the geomembrane and 
the low-permeability soil (given by eqn (32) if there is a geotextile between 
the geomembrane and the low-permeability soil and by eqn (33) if the 
space between tbe geomembrane and the low-permeabiIity soil is empty); 
and d = diameteroflhe geomembrane Me. (Note that,eqn (49).satisfies 
eqn (44) with h = 0, i.e. is = 1.) 

Equation (50) gives the radius of the wetted area if the hydraulic 
transmissivity of the space between the geomembrane and the low- 
permeability soil is known and if the depth of liquid on top of the 
geomembrane is known. When the radius of the wetted area, R, is 
determined, the leakage rate, Q, can be determined using eqn (46). 

The most uncertain step in using the above equations is the selection of 
the hydraulic transmissivity value, 8. If there is a geotextile between the 
geomembrane and the underlying soil, and if the geotextile is in close 
contact with the overlying geomembrane and the underlying soil, the 
hydraulic transmissivity, 0, can be obtained by conducting hydraulic 
transmissivity tests on samples of the geotextile subjected to a normal 
stress equal to the normal stress in the field. If there is no geotextile 
between the geomembrane and the soit, the hydraulic transmissivity to use 
in eqn (50) is given by eqn (33). To use eqn (33), it is necessary to estimate 
the spacing, s, between the geomembrane and the underlying soil. This 
spacing depends on the rugosity of the soil surface, the stiffness of the 
geomembrane, and the magnitude of the normal stress that tends to press 
the geomembrane against the soil. Recommended values for the spacing, 
S, were given by Brown etai.’ on the basis of model tests, and can be found 
hereafter in Section 3.32. Using these recommended values, Brown etak9 
established charts giving the leakage rate and the radius of the wetted area 
as a function of the geomembrane hole surface area, the soil hydraulic 
conductivity and the depth of water on the geomembrane. To summarize 
results presented in these charts and to extiapolate or interpolate them, we 
propose the following empirical equations: 

These equations are only valid with the units indicated: Q = leakage 
rate (m%); 42 = geomembrane hole area (m2); k, = hydraulic conductiv- 
ity of low-permeability soil (m/s); h, = liquid depth on the geomembrane 
(m); and R = radius of wetted area between geomembrane and soil (m), 
Equations (51) and (52) result from a combination of*,.the theoretical 
analysis presented above and experimental data presented in Section 
3.3.2. Note that, as discussed prior to eqn (45), eqns (51) and (52) are 
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based upon assumptions that are valid only if the liquid depth on the 
geomembrane is less than the thickness of the low-permeability soi1 layer. 

Upper bozmisulution. An upper bound of the flow rate and the radius of 
the wetted area occurs when the spacings between the geomembrane and 
the underlying soi1 is so large that the flow rate through a geomembrane 
defect is given by eqn (22), that is the Bernoulli’s equation related to free 
flow through an orifice. By combining eqns (22) and (46). it appears that, if 
the spacing between the geomembrane and the soil is large enough to 
ensure free flow, the radius of the wetted area is given by: 

nR2 kS = 045am (53) 
hence: 

R = Oe44 aoes(2ghw)@ zs k; On5 (54) 
and, in the case of a circular hole: 

R = O-39 d (2gh,)0’s k;“” (5% 
where: R = radius of the wetted area; a = gcomembrane hole area; 
d = hole diameter; g = acceleration due to gravity; h, = liquid depth on 
the geomembrane; and k, = hydraulic conductivity of the low-permeabil- 
ity soil underlying the geomembrane. Basic SI units are: R (m), a (m2), d 
(4, g (m/s*), k (m), and k, (m/s). 

Note that the radii given by eqns (52), (54) and (55) correspond to cases 
where there is no overlapping between wetted areas related to different 
geomembrane holes. 

3.3 Laboratory model tests 

3.3. I Introduction 
Tests to evaluate leakage rates through composite liners due to geomem- 
brane holes were conducted by Fukuoka2’*22 and Brown ei aL9 

In both studies, tests were conducted with a geomembrane having a 
circular hole, and various hole diameters were tested. Additional tests by 
Brown et al. included geomembrane flaws that were not circular such as 
sIits or seam defects. The tests were intended to be fuIl-scale models since 
hole size, geomembrane thickness and (approximately) soil layer thick- 
ness were similar to typical field values. However, the permeameters used 
had a limited diameter (e.g. 04 m (2 ft) for Brown et al. and 13 m (5 ft) 
for Fukuoka) and the extent of lateral flow between the geomembrane and 
soil was limited by the walls of the permeameter. 

In the tests conductkd by Brown et al., the geomembrane was always 
covered by 045 m (6 in) of gravel to ensure contact between geomem- 
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brane and soil, and, in some tests, an additional load up to 160 kPa 
(3340 PSf) ( e uivalent to 10 m (30 ft) of soi1) was apphed io evaluate the 9 
effect of overburden pressure. In many of the tests conducted by F&u&a, 
the geomembrane was not covered, and the only load applied on the 
geomembrane was the water pressure. 

Water depths on the geomembrane in the Brown et al. tests were up to 
1 m (40 in). In the Fukuoka tests, water pressures equivalent to water 
depths up to 40 m (130 ft) were used. Tests by Brown et al- were 
conducted for landfill applications while Fukuoka was working on the 
design of a large dam and reservoir. 

Fukuoka used only a PVC geomembrane, while Brown er al. considered 
a variety of geomembranes: HDPE, PVC, CSPE and EPDM, with various 
thicknesses. Some of the tests conducted by Fukuoka and by Brown et al. 
included a geotextiIe between the geomembrane and the soil. 

Tests by Fukuoka as we11 as tests by Brown e! al. showed that there is 
significant flow between the geomembrane and the soil, with or without 
geotcxtile. 

3.3.2 Review of fests by Brown et al. . . 
These tests are presented in a report by Brown ei aLY 

Descriprion uj%c lesti. Tests were conducted in a 0.6 m (24 in) dia- 
meter permeameter. Geomembrane hole diameters ranged between 
O-8 mm (O-03 in} and 13 mm (O-5 in), and noncircutar holes such as slits 
and seam defects were considered. 

The geomembranes and their thicknesses were: HDPE, 0.75-24 mm 
(30-100 miis); PVC, 0.5475 mm (20-30 mils); CSPE, 04-l l 15 mm (36- 
45 mils); and EPDM, O-75 mm (30 mils). In some tests, geotextiles were 
included between the geomcmbrane and the soil. The geotextiIes were 
needlepunched nonwoven materials with masses per unit area of 2% 
350 g/m2 (7-10 oz/yd’) and thicknesses (under no load) of the order of 
2.54 mm (O-W-O-16 in). 

The soiIs used were a silty sand (4, = 2 x 10W6 m/s), and a clayey silt 
(k = 2 x lo-” m/s). 

Approach. The diameter of the pcrmeameter used by Brown el al. was 
small (O-6 m (24 in)) and lateraf flow could not extend beyond a radius of 
O-3 m (12 in) as it would have in most cases without the limitation imposed 
by the permeameter walls. This fact was recognized by Brown et al. who 
did not use their tests to evaluate the leakage rate directly. Instead, they 
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the clayey silt (k, = 2 x IOB8 m/s (2 x low6 cm/s)), the geotextile does not 
change the leakage rate. On the silty sand (kS = 2 x lo-” m/s 
(2 x 1o-4 cm/s)), the geotextiIe seems to reduce slightly the leakage rate. 

Effect OJoverburden presmres. When a compressive stress of 160 kPa 
(3340 psf) (equivalent to 10 m (30 ft) of soil) is applied on a O-75 mm 
(30 mil) thick WDPE geomembrane placed on a soil with a hydraulic 
conductivity of 2 x 10B6 m/s (2 x 10m4 cm/s), the leakage rate is divided by 
200 and the calculated theoretical spacing between geomembrane and soil 
is divided by 10, as compareqto the case where the overburden pressure 
was I-5 kPa (30 psf). (There are no results for the soil with a hydraulic 
conductivity of 2 x IO-’ m/s (2 x 10 -6 cm/s).) Based on this limited result, 
the effect of overburden pressure on the leakage rate appears to be 
significant. 

Effecr offraw shape. Erratic results were obtained with geomembrane 
slits and seam defects on the soii with kz = 2 x 10V6 m/s (2 x lo-’ cm/s), 
and it was difficult to compare slits, seams and circular holes with the 
2 x lo-’ m/s (2 X lW6 cm/s) soil because for that soil there is a largk 
lateral flow and permeameter walls disturbed the flow. Therefore, in our 



opinion, it is not possible to draw conclusions regarding the effect of flaw 
shape. 

Conclusions from Brown et al.? les&. In order to extrapolate to field 
conditions, Brown et al. make the recommendations in Table 8 regarding 

- the values of the spacirig’btitween geomembratie and-sail to be used in the 
equations presented in Section 3.2.4 to evaluate leakage rate and radius of 
wetted area in actual field conditions where lateral extension of flow is not 
impeded by wall permeameter. 

TABLE 8 

Soil hydraulic 
conduchhy, k, 

Ws) 

Gtomernbranc-soil 
spacing, s 

b4 

lo-* o-15 
lo-’ 04N3 
1O-n O-04 
WY O-02 

These values are larger than the calculated spacing values previously 
given in the discussion of the approach. Also, these spacing values are for 
the case when there is little or no overburden (e.g. 15 cm (6 in) of graveI), 
and smaller spacing values would have been obtained with overburden of 
the order of typical field values. Therefore, the above spacing values are 
large in the case of laboratory conditions. We will assume that these values 
can be used in the case of excellent field conditions (defined subsequently), 
based on the following rationale: (i) on one hand, in the field, overburden 
stresses, which tend to decrease the spacing, are larger than the 15 cm 
(6 in) of gravel used as overburden in the tests; and (ii), on the other hand, 
for a given overburden stress, spacing between the geomembrane and the 
soil is larger in the field than in the laboratory tests since, even under 
excellent fieId conditions, geomembranes aiways have wrinkles and soil 
preparation is never as good as in the tests. 

The above spacing values were used by Brown et aL9 to establish their 
charts (not reproduced here), which we used to establish eqns (51) and 
(52). Therefore, values given by these equations can be assumed to 
represent excellent field conditions. 

3-3.3 Review of tests by Fukuoka 
These tests are described by Fukuoka.2*-U They were conducted for the 
design of the lining system for a dam and a reservoir with a maximum water 
head of 4O m (130 ft). 
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